Cell cycle-regulated multi-site phosphorylation of Neurogenin 2 coordinates cell cycling with differentiation during neurogenesis.

نویسندگان

  • Fahad Ali
  • Chris Hindley
  • Gary McDowell
  • Richard Deibler
  • Alison Jones
  • Marc Kirschner
  • Francois Guillemot
  • Anna Philpott
چکیده

During development of the central nervous system, the transition from progenitor maintenance to differentiation is directly triggered by a lengthening of the cell cycle that occurs as development progresses. However, the mechanistic basis of this regulation is unknown. The proneural transcription factor Neurogenin 2 (Ngn2) acts as a master regulator of neuronal differentiation. Here, we demonstrate that Ngn2 is phosphorylated on multiple serine-proline sites in response to rising cyclin-dependent kinase (cdk) levels. This multi-site phosphorylation results in quantitative inhibition of the ability of Ngn2 to induce neurogenesis in vivo and in vitro. Mechanistically, multi-site phosphorylation inhibits binding of Ngn2 to E box DNA, and inhibition of DNA binding depends on the number of phosphorylation sites available, quantitatively controlling promoter occupancy in a rheostat-like manner. Neuronal differentiation driven by a mutant of Ngn2 that cannot be phosphorylated by cdks is no longer inhibited by elevated cdk kinase levels. Additionally, phosphomutant Ngn2-driven neuronal differentiation shows a reduced requirement for the presence of cdk inhibitors. From these results, we propose a model whereby multi-site cdk-dependent phosphorylation of Ngn2 interprets cdk levels to control neuronal differentiation in response to cell cycle lengthening during development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The cdk inhibitor p27Xic1 is required for differentiation of primary neurones in Xenopus.

We have investigated the role of the cyclin-dependent kinase inhibitor, p27(Xic1), in the coordination of cell cycle exit and differentiation during early neurogenesis. We demonstrate that p27(Xic1) is highly expressed in cells destined to become primary neurones and is essential for an early stage of neurogenesis. Ablation of p27(Xic1) protein prevents differentiation of primary neurones, whil...

متن کامل

Inhibition of neurogenesis by SRp38, a neuroD-regulated RNA-binding protein.

Although serine-arginine rich (SR) proteins have often been implicated in the positive regulation of splicing, recent studies have shown that one unusual SR protein, SRp38, serves, contrastingly, as a splicing repressor during mitosis and stress response. We have identified a novel developmental role for SRp38 in the regulation of neural differentiation. SRp38 is expressed in the neural plate d...

متن کامل

Regulation of Motor Neuron Specification by Phosphorylation of Neurogenin 2

The mechanisms by which proneural basic helix-loop-helix (bHLH) factors control neurogenesis have been characterized, but it is not known how they specify neuronal cell-type identity. Here, we provide evidence that two conserved serine residues on the bHLH factor neurogenin 2 (Ngn2), S231 and S234, are phosphorylated during motor neuron differentiation. In knockin mice in which S231 and S234 of...

متن کامل

Neurogenin Promotes Neurogenesis and Inhibits Glial Differentiation by Independent Mechanisms

The mechanisms by which neural stem cells give rise to neurons, astrocytes, or oligodendrocytes are beginning to be elucidated. However, it is not known how the specification of one cell lineage results in the suppression of alternative fates. We find that in addition to inducing neurogenesis, the bHLH transcription factor neurogenin (Ngn1) inhibits the differentiation of neural stem cells into...

متن کامل

Comparison of the generic neuronal differentiation and neuron subtype specification functions of mammalian achaete-scute and atonal homologs in cultured neural progenitor cells.

In the vertebrate peripheral nervous system, the proneural genes neurogenin 1 and neurogenin 2 (Ngn1 and Ngn2), and Mash1 are required for sensory and autonomic neurogenesis, respectively. In cultures of neural tube-derived, primitive PNS progenitors NGNs promote expression of sensory markers and MASH1 that of autonomic markers. These effects do not simply reflect enhanced neuronal differentiat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 138 19  شماره 

صفحات  -

تاریخ انتشار 2011